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Abstract. We present a field-theoretic analysis of high-precision Monte Carlo data for the
Domb–Joyce model on the sc lattice. We vary the repulsion between two segments at the same
point from zero (random walk) to infinity (self-avoiding walk). Eventually, we even include a
repulsion between segments at neighbour points to increase the excluded volume beyond that of
self-avoiding walks. The data for the end-to-end distance, the radius of gyration and the partition
function clearly show the existence of two branches of universal behaviour. These two branches
can be identified with the weak- and strong-coupling branch of the renormalization group,
respectively. A quantitative analysis shows the ability of the standard field theoretic approach
to describe the data, including the data for strong coupling, i.e. renormalized couplingu greater
than its fixed point valueu∗. We conclude, in contrast with some claims in the literature,
that the standard formalism of the renormalized field theory can be used even foru > u∗
(strong-coupling branch). In addition, exploiting the fast approach to asymptotic behaviour at
the transition between weak and strong coupling, we obtain very precise estimates for the critical
exponents of self-avoiding walks.

1. Introduction

Thermodynamic systems at a critical point, like ferromagnets at the Curie point or infinitely
dilute solutions of infinitely long polymer chains, show simple power-law and scaling
behaviour. For a given class of systems this behaviour is universal, i.e. independent of
details of the microstructure. It can be understood within the frame of field theory and of
the renormalization group, which describes the change of the field theoretic model under a
dilatation of the elementary length scale. The critical point corresponds to a fixed point of
the renormalization group. Here the theory becomes scale invariant, and universal power
and scaling laws result.

On the quantitative level the standard renormalized field theory has provided estimates
of universal fixed-point quantities, which are in good agreement with the experimental
data [1]. However, the corrections to that limiting behaviour sometimes even qualitatively
differ from field theoretic predictions found in the literature [2–4]. The amplitudes of these
‘corrections to scaling’ have the wrong sign. Well known examples are the susceptibility
of the three-dimensional Ising model [2] or the end-to-end distance of strictly self-avoiding
walks (SAWs) on typical three dimensional lattices [4]. In both cases the asymptotic power-
law behaviour is approached from a direction opposite to that predicted by field theory.
Therefore, the applicability of the theory to these systems has been questioned [2, 4, 5].
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Within the framework of field theory the corrections to scaling are proportional to the
deviation(u∗ − u) of the renormalized couplingu from its fixed point valueu∗ > 0. The
theory proceeds by expansion aboutu = 0, and the standard predictions for the corrections to
scaling are derived in the continuum limit of the theory. This leads to the restrictionu 6 u∗
which fixes the sign of the corrections. The empirical observation of corrections to scaling
of opposite sign then raises the question whether the field theoretic results can be analytically
continued tou > u∗. As we are dealing with systems which have a finite microscopic cut-
off (the lattice spacing of the ferromagnet or the segment size of the polymer, respectively),
arguments based on the continuum limit which enforces the restrictionu 6 u∗ do not apply.
Contradictory statements on that issue are found in the literature, but a careful review of the
field theoretic approach [6–8] shows that there is neither a proof nor a disproof of the validity
of the field theory foru > u∗ in problems of statistical mechanics. We therefore consider
here, on an empirical level, the question whether results of renormalized field theory, applied
at u > u∗, are supported by experiment. Specifically we analyse self-repelling walk data
taken for various strengths of the self repulsion, which directly influences the renormalized
couplingu. Our work extends previous studies, where simulation data for the end-to-end
distanceRe of self-repelling walks [8] or physical solution data for the radius of gyration
Rg and the second viral coefficientA2 [9] have been analysed.

We briefly explain the general theoretical structure with the example of the end-to-end
distance. Renormalized field theory predicts a scaling form as a function of the self repulsion
(‘excluded volume strength’) and chain lengthN (number of steps in the walk):

Re =
√

2dl̃N1/2α̃e(z̃) (1)

z̃ = ṽN1/2. (2)

The nonuniversal parametersl̃, ṽ depend on the step length, the excluded volume, and on
other microscopic features of the model. The critical limit is reached forz̃→∞, whereα̃e
reduces to a universal power law,

α̃e(z̃)−→
z̃→∞

aez̃
2ν−1 (3)

whereν is the correlation length exponent. The functionα̃e(z̃) for z̃ < ∞ describes the
correction to scaling. It is universal and can be calculated as a power series in terms of the
renormalized couplingu. Perturbation theory also enters in a second step, well separated
from the perturbative determination of the scaling functions. It is used to establish the
renormalization group (RG) flow equations which give the change of the renormalized
theory under an infinitesimal dilatation. Integrating these equations we find two branches,
depending on the starting point of the flow. For systems close toθ conditions, where
on microscopic scales the effect of the self repulsion is small, we find the weak-coupling
branchα̃(<)e (z̃), corresponding tou < u∗. For large self-repulsion, however, we reach the
strong-coupling branch̃α(>)e (z̃), whereu > u∗. In the excluded volume limit̃z→∞ both
branches approach the same asymptotic power law (3), coming, however, from opposite
sides (see figure 1).

Previous work by one of us [8] indeed uncovered this two-branched structure in Monte
Carlo (MC) data, but the data basis was not very large. In particular, the range ofz̃ for
different values of the excluded volume did not overlap, so that the universal scaling feature
predicted by the theory could not be tested. Furthermore, for each excluded volume strength
the theory involves two fit parametersṽ, l̃, so that fitting a single observable is not a strong
test of the quantitative reliability of the theory. Likewise, the analysis of solution physical
data [9] was consistent with the two-branched structure, but the accuracy of the data was
by far insufficient for any quantitative test.
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Figure 1. The scaling functioñαe as a function of̃z. Middle curve asymptotic.

This situation asks for new high-precision simulations, covering a large range of chain
length and excluded volume strength. Since for a given excluded volume all observables
involve the same two parametersl̃,ṽ, we should measure several observables and compare
the results to the quantitative predictions of field theory. In our simulation we used the
Domb–Joyce model [10] on a simple cubic lattice, employing an improved chain-growth
algorithm [11, 12]. We systematically varied the on-site repulsion, acting if two monomer
positions coincide, but to enlarge the excluded volume we eventually also included and
varied a nearest-neighbour repulsion. The chain length extends up toN = 1.6 × 104,
depending on the interaction strength. We measured the end-to-end distance, the radius
of gyration, the partition function, and the average value and the variance of the potential
energy. In the present paper we present a detailed analysis of the first three variables, the
latter two being analysed elsewhere [13]. For each observable the data clearly exhibit a
two-branched scaling structure, thus supporting our qualitative expectation.

The quantitative comparison of the MC data and RG calculation was performed in
several steps. In a first step, we have to convince ourselves that the data are mutually
consistent (e.g. the mean energy should be related to the derivative of the partition function
with respect to the interaction strength), and that all data asymptotically tend to the SAW
fixed point. For that we performed phenomenological fits and made precise estimates of
effective critical exponents. Next, we have to map the Domb–Joyce model onto field
theory. This involves nonuniversal parameters which are considered as fitting parameters.
In particular, this involves finding that value of the Domb–Joyce coupling which corresponds
to the transition from weak to strong coupling. We obtained these parameters from a single
observable, the end-to-end distance. Finally, given all these nonuniversal parameters, we are
able to predict the variation of the other measured quantities, namely the radius of gyration
and the partition function. We find good agreement among theory and data.

2. Summary of theoretical results

We consider a discrete chain model, composed ofN + 1 segments connected byN bonds
of average size of order̀. The configuration of the chain is described byN + 1 segment
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coordinatesrj , j = 0, . . . , N in d-dimensional space (r0 = 0). The Hamiltonian is given by

e−H/kBT = exp

{
− 1

4`2

N∑
j=1

(rj − rj−1)
2

}∏
(j,k)

′
[1− (4π`2)d/2βeδ

d(rj − rk)] (4)

whereβe > 0 is the dimensionless excluded-volume parameter. The product extends over
all pairs (j, k) of segments indices, with the restriction that in the cluster expansion all
terms where any segment index occurs more than once are omitted. The partition function
is given by integration over all segment coordinates

Z(N) =
∫
�

D[r] e−H/kBT (5)

and the end-to-end distanceRe and the radius of gyrationRg are defined as

R2
e = 〈(rN − r0)

2〉 R2
g =

1

N + 1

〈 N∑
i=0

(ri −RCM)
2

〉
(6)

whereRCM is the centre of mass.
The model has to be evaluated perturbatively. All quantities are calculated in the

cluster expansion in powers ofβe. For the regime of interest,βe > 0 andN large, the
bare expansion parameterz ∼ βe N

1/2 diverges. This well known problem is solved by
renormalization, which means that there exists a mapping from the ‘bare’ parameters`, N
andβe to the renormalized counterparts`R, nR andu changing physical observables only
by terms of (canonical) order 1/N . For sufficiently largeN the effects of order 1/N should
be negligible.

The renormalized segment size`R can be chosen arbitrarily, so that renormalization
yields a one-parameter family (`R, u(

`R
`
), nR(

`R
`
)) of renormalized theories, all equivalent

to the given bare theory up to corrections of order 1/N . The renormalization group mapping
(`, βe, N) → (`R, u, nR) is known with good precision from high-order calculations. We
here employ a form established within the framework of the ‘minimal subtraction’ scheme.
In three dimensions this mapping has been determined numerically, and we here use
an analytical parametrization of the results that respects the basic analytic structure and
reproduces the results within the numerical accuracy of these previous analyses [8, 14],

`R = f |1− f |−1/ω(1+ 0.824f )0.25 l̃

ṽ
(7)

nR = f −2|1− f |1/(ων) 1− 0.005f − 0.028f 2+ 0.022f 3

√
1+ 0.824f

ṽ2N (8)

f = u/u∗. (9)

Here the valuesν = 0.588, ω = 0.80 andu∗ = 0.364 have been used [17, 18]. We will
thus also use these values in the comparison with field theory, although MC estimates with
supposedly higher accuracy exist [4], and although we shall argue that our own MC data
also give estimates forν andω (and, in particular,γ ) with higher precision. However, our
first-order evaluation of the scaling functions is not so precise as to seriously consider the
small difference among the above-quoted values and the MC estimates.

The parameters̃l and ṽ are functions off0 = u(`R=`)
u∗ , which has a nontrivial but

analytical dependence on the excluded volume parameterβe. These two nonuniversal
microscopic parameters will be considered as fit parameters.

The renormalization group mapping (7), (8) shows two different branches depending
upon the starting pointf0. For 0 6 f0 < 1 we always findf < 1, corresponding to
the weak-coupling branch. Starting withf0 > 1 we havef > 1 corresponding to the
strong-coupling branch.
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Within the renormalized theory we can now determine the physical quantities by an
expansion in powers ofu. Our results for the end-to-end distance, the radius of gyration
and the partition function are based on first-order renormalized perturbation theory. We find
[15, 16]

R2
e = 2d`2

RnR

[
1+ u

{
n
ε/2
R

2

ε(2+ ε) −
1

ε

}
+O(u2)

]
(10)

R2
g =

d

3
`2
RnR

[
1+ u

{
1

2
n
ε/2
R

(
2

ε
− 2

2+ ε −
1

4+ ε +
1

6+ ε
)
− 1

ε

}
+O(u2)

]
whereε = 4− d. The partition functionZ(N) is given by

Z(N) = �

(4π`2)d/2
eµ
∗N Z(u)

ZN(u)

[
1+ u

{
n
ε/2
R

(
1

ε
+ 1

2− ε
)
− 1

ε

}
+O(u2)

]
(11)

whereZ(u), ZN(u) are standard renormalization factors.µ∗ is the chemical potential per
segment of an infinitely long chain.

In evaluating such expressions we first have to fix the arbitrary scale`R. As mentioned
above, in the theory evaluated toall orders,̀ R is arbitrary, but in a low-order approximation
the choice of̀ R matters. It has to be chosen so as to enforce a good expansion scheme.
Now u∗ in three dimensions is reasonably small. Since the expansions involve powers of
un

ε/2
R , this suggests the choice ofnR = n0 = O(1), implying `R = O(Rg). In other words,

we choosè R to be of the order of the relevant macroscopic length scale. To fixnR = n0

precisely we consider the fixed-point value of some universal ratio, which is most sensitive
to nR. A good choice is the interpenetration ratioψ , which is constructed from the second
viral coefficient and the radius of gyration

ψ =
(
d

12π

)d/2
A2

Rdg
. (12)

To one-loop order it reads

ψ = u

2
n

4−d
2
R

[
1+ 2u

ε

(
1− nε/2R

6+ε−22+ε/2
(1−ε2/4)(2+ε/2)

)]
[
1− u

ε
+ u

2n
ε/2
R

(
2
ε
− 2

2+ε − 1
4+ε + 1

6+ε
)]d/2 . (13)

At the fixed point it takes a universal valueψ∗. If we keep then0 dependence,ψ∗ is given
by (d = 3, u∗ = 0.364)

ψ∗ = 0.182
√
n0

1.728− 0.521
√
n0(

0.636+ 0.232
√
n0
)3/2 . (14)

Forn0 ≈ 1,ψ∗ is insensitive ton0 and we will choosen0 such thatψ∗, in this approximation,
is equal to the experimental valueψ∗exp = 0.245 [20, 3, 19]. This leads ton0 = 0.53. We
should note that our final results forRe etc are quite insensitive to the choice ofn0, as
long asn0 = O(1). The main effect of a variation ofn0 is absorbed into the nonuniversal
parameters̃v, l̃.

We are now in a position to discuss the structure of our results. We again use the
example of the end-to-end distance, discussing the swelling factor

α̃2
e (z̃) =

R2
e

2dl̃2N
. (15)

Consider first the limitf → 0. Ford = 3, equation (10) yields

α̃2
e = [1+ ã0f + · · ·]
= [1+ a0ṽ

√
N + · · ·] (16)
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which is the result for a random walk (RW) including the first correction due to the excluded
volume. In this regimẽv is proportional to the bare excluded volume strengthṽ ∼ βe and
the additional parameter̃l is equal to the microscopic length̃l = `.

Increasingf → 1 we trace out the weak-coupling branch. In the excluded volume
regime,f ≈ 1, we find

α̃2
e = CN2ν−1[1+ ãs(1− f )+ · · ·]
= CN2ν−1[1+ as(ṽ

√
N)−2ων + · · ·] (17)

whereC = C(ṽ) is a constant. The correction-to-scaling amplitudeas is positive forf < 1.
Evaluating the theory also forf > 1 we construct the strong-coupling branch, whereas is
negative. Figure 1 illustrates these results. Clearly the two-branched structure of the RG
mapping induces a two-branched structure for all observables.

Equations (7) and (8) give the RG mapping in an implicit form, which is not very
practical for an analysis of data. We therefore evaluated the theory numerically ind = 3
and parametrized the results by simple analytical expressions. Specifically we evaluated the
end-to-end swelling̃α2

e (equation 15), the corresponding quantity for the radius of gyration

α̃2
g(z̃) =

3

d

R2
g

l̃2N
(18)

as well as a functionF(z̃) defined by

C(N) = Z(N)Z(1) = eµ
∗(N−1)N(γ−1) F (z̃)

F (ṽ)
(19)

whereγ ≈ 1.158 (d = 3) is another asymptotic exponent. All these functions depend only
on the variablẽz = ṽN1/2 (equation 2). We find simple parametrizations (ind = 3):

α̃2
e (z̃) =

{
(1.00+ 1.40z̃+ 0.40z̃2)(2ν−1) : weak

0.851̃z2(2ν−1)(1.00− 0.53z̃−2νω − 0.2247̃z−1−2νω) : strong

α̃2
g(z̃) =

{
(1.00+ 1.32z̃+ 0.378̃z2)(2ν−1) : weak

0.843̃z2(2ν−1)(1.00− 0.54z̃−2νω − 0.2376̃z−1−2νω) : strong

F(z̃) =
{
(4.3633+ 4.578̃z−1+ 1.0z̃−2)(γ−1) : weak

1.2627(1.00− 0.1411̃z−2νω + 0.0312̃z−4νω) : strong.

(20)

Note that these parametrizations are not meant to incorporate the full analytic structure
predicted by the renormalization group. In particular in the excluded volume limitz̃→∞
they only reproduce the leading power (weak coupling) or the first two leading powers
(strong coupling) of the full theoretical results. They merely numerically reproduce the full
results within 1% deviation, which is adequate within our one-loop approximation.

The errors due to neglecting higher-order loops are of course not known in detail, but
one relatively large error is well documented [21] and worth mentioning. The ratioα̃2

g/α̃
2
e

is predicted wrongly by≈ 3%. For z̃ = ∞ it is ≈ 0.96 [18, 4], while equation (20) would
predict 0.99. Since this ratio is 1 in the RW limit, this error exceeds the total variation
over the entire weak-coupling branch. Thus we should not use equation (20) for detailed
comparison with MC data for this ratio.

We should also comment on the parametrization for the weak-coupling branch, as one
might wonder why we did not employ the same analytic structure as for the strong-coupling
branch. The latter would follow more closely the correct analytic behaviour for largez̃,
but it would be completely inappropriate forz̃→ 0. The advantage of the parametrization
chosen in equation (20) is that it gives a good numerical fit over the entire range ofz̃.
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Finally, we should comment on nonuniversal corrections which are not included in
equation (20). Such corrections are due to chain stiffness, three-body forces, etc. Taking
into account the leading correction toR2

e in the weak-coupling branch, e.g. we would roughly
obtain

R2
e /N = 2dl̃2α̃2

e (z̃)

(
1+ B(ṽ)

N

)
(21)

with an unknown and nonuniversal amplitudeB(ṽ). (More precisely, close to the excluded
volume limit the renormalization group predicts several corrections of the formO(1/Nxj )

with xj ≈ 1.) Although the last term has a completely different origin, it cannot be uniquely
separated from the 1/z̃2 term in the expansioñα2

e = 0.85z̃2(2ν−1)(1+0.62/z̃+0.72/z̃2+· · ·).
The only exceptions are for the neighbourhood of the RW limit (z̃→ 0) and precisely at the
weak/strong cross-over point. There we havez̃ = ∞, whence all deviations from perfect
scaling are due to nonuniversal corrections. Away from these points, all we can do is to
hope that the functionB(ṽ) is smooth and not too large. Thus the numerical test of the
above theory consists in showing that the rest remaining after subtraction of the theoretical
predictions has indeed these features. The same remark of course also holds for the other
observables, and for higher-order (1/N2, 1/N3, . . .) correction terms.

3. Monte Carlo analysis

3.1. Simulations and data

We consider a slight extension of the original Domb–Joyce model [10]. The model is
defined on a simple cubic lattice. The partition function for a chain of lengthN is given
by the weighted sum over allN -step RW configurations

Z(N) =
∑

config.

(1− w)κ1(1− q)κ2 (22)

whereκ1 is the number of the crossings of the walk andκ2 is the number of (nonbonded)
nearest-neighbours (nN). Crossings are weighted according to their multiplicity, i.e. a point
with m visits of the walk contributes a factor(1− w)m(m−1)/2. The casew = 0, q = 0
corresponds to the RW,w = 1, q = 0 to the SAW, andw = 1, q = 1 to a walk with no
nN. Systematically varyingw and q we can interpolate among these limits. We actually
usedq 6= 0 only together withw = 1, i.e. used nN repulsion only to increase the excluded
volume effect beyond that of ordinary SAWs. Forq = 0 our model is identical to the
Domb–Joyce model.

In addition to data forw < 1 resp.q 6= 0, we present also new high-statistics data for
w = 1, q = 0, i.e. for SAWs. It is accepted that the most efficient algorithm in this case is
the pivot algorithm [4, 22], provided one is not interested in the partition sum itself but only
in configurational properties (Re,Rg, 〈E〉, . . .). We thus performed additional simulations
with the pivot algorithm for intermediate chain lengths (100< N < 9000) where previous
analyses [4, 23–25] had relatively poor statistics. In these simulations we measured only
Re. The results are given in table 1.

For the bulk of the simulations we used chain-growth algorithms as described in detail
in [11, 12]. The reasons for not using the pivot algorithm are mainly the following.
• Estimating partition sums is not easy with the pivot algorithm. There exist

modifications of the pivot algorithms for this purpose [26], but they do not seem to be
easy to implement or very efficient (see note added in proof).
• The efficiency of the pivot algorithm for SAWs results mainly from the fact that most

‘wrong’ moves leading to intersections are detected very soon. Thus it is not too costly
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Table 1. End-to-end distances and sample sizes for SAW simulations using the pivot algorithm.

N R2
e /N Number of pivot moves

104 2.671 30± 0.000 10 5.08× 109

208 3.042 10± 0.000 12 6.14× 109

300 3.255 10± 0.000 13 5.74× 109

416 3.455 94± 0.000 16 4.96× 109

832 3.920 00± 0.000 29 2.90× 109

1200 4.187 45± 0.000 40 1.54× 109

2000 4.589 11± 0.000 56 9.64× 108

4000 5.192 21± 0.000 75 8.54× 108

6000 5.579 56± 0.000 80 8.66× 108

9000 5.991 34± 0.001 53 2.82× 108

to try many unaccepted moves. This is different for the Domb–Joyce model, where the
acceptance of a pivot move is determined by a Metropolis (or heat bath) criterion which
needs the entire move to be performed in each case. Thus one loses the main advantage as
soon asw < 1.
• The efficiency of the algorithms of [11, 12] is greatly increased whenw � 1 and

q = 0. In these algorithms, monomers are added to and taken away from the end of a
partial chain so that the chain lengthN performs essentially a RW. Thus it takes roughly
≈ N2/D MC steps to generate one independent chain of lengthN , with D being the
effective diffusion coefficient. In the limitw → 0 one findsD ∝ 1/w. Thus for our
smallest value ofw (=0.00125), we were able to make chains with length 104 essentially
in timeO(N).

An important feature of the algorithms of [11, 12] is that they generate data for allN less
then some prescribedNmax. But these data are not independent, thus making least-square
fits rather delicate (unless we estimate the full covariance matrix, which is not feasible for
the present chain lengths). Also, successive chains are not produced independently. Instead,
they are produced in bunches (called ‘tours’ in [11, 12]) such that chains within one tour
are correlated, while chains in different tours are strictly independent. Thus the number
of tours which have reached a lengthN is a direct measure of the number of independent
chains of this length. It is a better indicator of statistical significance than the total number
of chains generated. The characterization of the data set is given in table 2.

3.2. Numerical results and heuristic analysis

We do not show numerical results of the observables themselves. Such plots would not be
informative, the statistical errors being much smaller than any symbol sizes or line widths.
A first alternative to showing raw data consists in showing ratios between them and analytic
fits. If the fit is perfect, then the plot should be flat. As an example we show in figure 2
SAW data forR2

e /N . In addition to our own (pivot- and chain-growth) data we also include
results from [4, 23]. We see that all data are compatible within the error bars. The fit, taken
at face value, would giveν = 0.586 84 and1 ≡ ων = 0.4. It is hard to attribute error
bars to these values, as the errors would be largely systematic due to the uncertainty in the
analytical form of the parametrization. As usual in MC analyses, this gives a large error
for 1. Thus our value of1 is compatible with the somewhat higher estimate from field
theory, but the estimate1 = 0.56± 0.03 from [4] seems too high. The fit used in figure 2
involves 1/N corrections and higher terms. From this fit alone we cannot decide whether
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Table 2. Sample characteristics for MC data using chain-growth algorithms.

w q Nmax Number of chains Number of tours
reachingNmax

1 1 2 000 2.2× 106 96 146
1 0.4 2 000 3.7× 106 270 720
1 0.2 2 000 6.5× 106 524 755
1 0 4 000 1.2× 109 3689 104a

0.8 0 2 000 1.1× 108 1260 544
0.6 0 2 500 1.3× 108 1227 452
0.5 0 2 500 2.2× 108 2183 117
0.4 0 3 000 2.2× 108 2705 814
0.3 0 4 000 1.0× 108 843 811
0.2 0 5 000 4.9× 107 298 157
0.1 0 4 000 2.1× 107 407 649
0.05 0 4 000 2.1× 107 612 399
0.02 0 8 000 1.0× 107 337 961
0.01 0 8 000 7.5× 106 362 272
0.005 0 8 000 6.6× 106 632 932
0.002 5 0 15 942 4.7× 106 479 403
0.001 25 0 15 000 3.1× 106 570 859

a Rg was measured only for∼ 2% of these data.
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Figure 2. SAW data forR2
e divided by a fitR2

e,fit as a function ofN . The fit is R2
e,fit =

(N + 0.103)2ν(1− 0.259N−0.4) with ν = 0.586 84.×, SAW data from [4],+, data from [23];
�, our pivot data. The central curve is from our chain-growth simulations, with the broken lines
giving the error bars.

these are indeed analytic corrections or rather universal corrections∼ 1/N2ων . Also, such
corrections render an estimate of1 unstable.

An analogous plot forZN is shown in figure 3. We have used a parametrization which
is compatible with1 = 0.5; again the error is hard to estimate. Our estimate forγ , on
the other hand, seems to be quite robust, giving us a preliminaryγ = 1.157± 0.001. This
agrees perfectly with the (less precise) field theoretic estimate [17], but is much smaller
than most other estimates from simulations [28] and from exact enumerations [27] (see note
added in proof).
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2
g for different w, q. From above:q = 1.0, 0.4, 0.2 andw = 1.0;

thenw = 1.0, . . . ,0.05 andq = 0. +, SAW data from [4].

We have made analogous fits for other observables, and for other values ofw and q.
In general the exponents are compatible with the above.ν seems to be slightly larger than
0.587 for the most precise simulations withw = 0.4 andw = 0.5. Together with the SAW
value we thus proposeν = 0.5872± 0.0005. This is somewhat smaller than the estimates
from [4, 17], but compatible with them. We should stress it is hard to estimate errors since
the values depend strongly on the parametrization chosen. Thus we conclude that explicit
fits are useful, but somewhat dangerous.

The main disadvantage of the above procedure is that it requires explicit fits to
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nonuniversal parameters. As an alternative we can form expressions where all dependence
on nonuniversal parameters disappears in the scaling limit. The simplest such combination is
the ratioR2

g/R
2
e . It is plotted against 1/

√
N in figure 4. In addition to our own data we show

there also those of [4]. Apart from the obvious consistency of the data, the most remarkable
observation is that the data approach the asymptotic valueR2

g/R
2
e = 0.159 95± 0.000 10

from above forw < 0.4, and from below forw > 0.4. This is fully compatible with the
two-branch hypothesis and suggests that the transition between weak and strong coupling
is at w∗ ≈ 0.4. But the strong curvatures seen for smallerN in the curves forw ≈ w∗

indicate sizeable nonuniversal corrections to scaling, sinceR2
g/R

2
e should be constant for

w = w∗ if such corrections were absent.
The next simple possibility is to study effective exponents. Forν, an obvious ansatz is

ν
(e)

eff (N) =
1

2 loga
log

[
Re(aN)

Re(N/a)

]
(23)

which according to the theory should tend toν = 0.588 for z̃ → ∞. The optimal choice
of a depends on the balance between statistical errors and the range over whichν

(e)

eff (N)

can be estimated. The latter decreases ifa is taken large, while the former diverge for
a → 1. In figure 5 we show results obtained witha = √2, plots witha = 2 are similar.
Again we include older data for comparison. Again the most remarkable observation is
that the data approach the asymptotic valueν from below forw < 0.4, and from above
for w > 0.4. To understand this result we consider varyingw and q for fixed N , say
N ≈ 500. If the couplingsw, q are small we are concerned with an almost RW and
ν
(e)

eff ≈ 0.5 < ν. Increasing the repulsion, one effect is to increase the effective stiffness
of the walk. Indeed extending the repulsion range beyond nN, we could approximate a
stiff rod, whereν(e)eff = 1 > ν. It thus is plausible thatνeff tends toν from above for
large self repulsion, and vice versa. Again the leading corrections to scaling change sign
at w = w∗ ≈ 0.4. But again we see strong curvature forw = w∗, indicating substantial
nonuniversal corrections to scaling forN < 400.

To obtain a similar effective exponentγeff, we have to take triple ratios instead of simple
ratios as forνeff. This is due to the unknown critical fugacityµ∗ in equation (19). The
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general ansatz is thus

γeff(N) = 1+
log

[
Cx(aN)Cy(bN)

C(N)

]
[x loga + y logb]

(24)

with

x + y = ax + by = 1 a < 1< b. (25)

The optimal choice fora and b depends now in addition on the way in which statistical
errors increase withN . In the present case, they increase roughly asNα with α ≈ 3

4. In
order to keep a large range inN we want the ratiob/a not to exceed 8. With this constraint
one finds numerically that the minimal error ofγeff(N) is obtained roughly fora = 1

2, b = 4,
giving x = 6

7, y = 1
7. Effective exponents obtained with this choice are shown in figure 6.

The main conclusion from this plot is the same as from the previous ones: the two branches
are visible withw∗ ≈ 0.4, but nonuniversal corrections to scaling cannot be neglected.

In terms of the functionF(z̃) (see (19))γeff(z̃) reads

γeff(z̃) = γ + 7

4 log 2

[
logF(z̃)− 6

7
logF

(
z̃√
2

)
− 1

7
logF(2z̃)

]
(26)

and is only a function of̃z.
According to renormalization theory the end-to-end distance should obey the scaling

law expressed in equation (2). In the next section we shall present detailed analyses of this
and similar scaling laws, where we compare with the specific scaling functions predicted by
perturbation theory. But the scaling law itself should hold independently of any perturbative
arguments, and it seems worth while to test it without assuming any knowledge about the
scaling functionα̃e(z̃). This is what we shall do now. The idea is the following: assume
we know the parameters̃l and ṽ for one pair of(w, q). Since our data overlap strongly,
we can then obtaiñl and ṽ for a neighbouring pair of(w, q) by demanding that the curves
fall on top of each other in a scaling plot whereRel̃−1N−1/2 is plotted against̃z. Actually,
due to finite size corrections, we only demand that parabolic approximations coincide for
largez̃. Finally, for the weak-coupling branch we can pin down the functionsl̃, ṽ andα̃e(z̃)
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Table 3. The parametersw andq and the resulting nonuniversal parameters.

w q ṽ3 l̃ ṽ f0 b µ∗

0.001 25 0.00 0.002 21 0.4082 0.002 16 0.002 16 1.001 1.791 123
0.002 50 0.00 0.004 51 0.4077 0.004 47 0.004 44 1.000 1.790 500
0.005 00 0.00 0.009 08 0.4073 0.009 07 0.008 97 0.999 1.789 282
0.010 00 0.00 0.018 3 0.4064 0.018 3 0.017 9 0.998 1.786 935
0.020 00 0.00 0.038 1 0.4043 0.038 2 0.036 5 0.995 1.782 544
0.050 00 0.00 0.103 6 0.3989 0.104 0 0.092 5 0.990 1.770 397
0.100 00 0.00 0.243 0.3894 0.244 0.189 4 0.983 1.752 666
0.200 00 0.00 0.697 0.3678 0.698 0.389 8 0.972 1.722 091
0.300 00 0.00 1.748 0.3374 1.777 0.606 2 0.960 1.695 241
0.400 00 0.00 5.884 0.2867 6.193 0.832 0 0.951 1.670 667
0.500 00 0.00 16.75 0.2567 15.11 1.096 2 0.940 1.648 037
0.600 00 0.00 5.066 0.3242 5.011 1.334 8 0.946 1.625 297
0.800 00 0.00 2.817 0.3842 2.790 1.808 1 0.988 1.583 981
1.000 00 0.00 2.324 0.4189 2.337 2.192 8 1.071 1.544 161
1.000 00 0.20 0.971 0.5409 0.971 2.398 0 0.219 1.501 752
1.000 00 0.40 0.839 0.5917 0.836 3.257 1 0.280 1.475 264
1.000 00 1.00 0.840 0.6607 0.841 3.935 7 0.413 1.398 156

completely by using the fact that the swelling factorα̃e(z̃)→ 1 for z̃→ 0. For the strong-
coupling branch no such fixed point exists, and our scaling curve is arbitrary with respect to
rescalings̃z→ λz̃, α̃e → λ2ν−1α̃e. Our results are shown in figure 7. They prove directly,
without using any explicit perturbative RG results, the predicted two-branched structure.
Furthermore, at least the weak-coupling branch agrees perfectly with equation (20). We
should, however, admit that the latter is not very significant, more significant tests being
given in the next section.
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4. Comparison among theory and data

The previous analysis has shown the two-branched structure and the scaling of the swelling
factor as predicted by renormalization theory. Now we compare the data with our
quantitative one-loop calculation.

4.1. End-to-end swelling and parameter fitting

We first consider the effective exponent (23) which is expressed in terms ofα̃2
e (z̃) as

ν
(e)

eff (z̃) =
1

2
+ 1

4 loga
log

[
α̃2
e (
√
az̃)

α̃2
e (z̃/
√
a)

]
. (27)

According to the theory it is a function ofz̃ only and thus involves the single nonuniversal
parameter̃v. Adjusting this parameter for each microstructure, i.e. each pair (w, q), we can
bring the data onto the two branches as shown in figure 8. (Only the data withN > 100
were used in the fit.) Note that the theoretical curves are just covered by the data. The
deviations seen are for chain lengthsN . 100, as expected. Furthermore, the ranges ofz̃

for different sets (w, q) strongly overlap, and scaling as a function ofz̃ is clearly verified.
The values of̃v extracted are collected in table 1, row 3.

Turning now to the swelling factor̃α2
e itself, we encounter the second parameterl̃.

Allowing for a variation of both parameters̃v, l̃ simultaneously, we find the results similar
to figure 7. Indeed, the empirical scaling function shown in figure 7 just coincides with the
numerical evaluation of our one-loop result. The parameters are collected in table 1, rows 4
and 5. We note from equation (28), below, thatṽ should diverge forf0→ 1 (see also [8,
figure 7]). Close tof0 = 1 it therefore cannot be determined with high precision. Taking
this into account we note that the results forṽ from the two fits are fully consistent. (In the
sequel we will use the values of the second fit.) We thus find full agreement among theory
and data, verifying and strengthening the conclusions of [8].

As stressed above, the nonuniversal parametersl̃, ṽ cannot be calculated quantitatively
from the microscopic model. However, as observed before [8], their variation can be
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Figure 8. The effective exponentν(e)eff as a function of̃z. Data of the chain-growth algorithm.
The curves give the result of the one-loop calculation. The horizontal lines indicate the intervals
of z̃ for differentw, q.
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understood qualitatively from the RG mapping. Identifying in equation (7)`R with the
microscopic cut-off̀ andf with f0 = f0(w, q) correspondingly, we have

ṽ

l̃
= `−1f0|1− f0|−1/ω(1+ 0.824f0)

0.25 (28)

showing thatṽ/l̃ diverges forf0→ 1. Furthermore for̀ R = ` the relation

nR = b(w, q)N (29)

should hold, so that equation (8) yields a second relation

b(w, q) = f −2
0 |1− f0|1/(ων) 1− 0.005f0− 0.028f 2

0 + 0.022f 3
0√

1+ 0.824f0
ṽ2. (30)

Both b(w, q) andf0(w, q) are expected to be smoothly varying functions ofw andq, in
contrast to the parametersl̃, ṽ of our two-parameter model, which are singular forf0→ 1.
To test this idea, we transform the measured parametersṽ, l̃ (q = 0) to f0(w, 0), b(w, 0)
via equations (28) and (30). Figures 9 and 10 show the results. As expected,f0(w, 0) and
b(w, 0) vary smoothly. In particular,

f0(w, 0) ≈ constantw (31)

holds forw . 0.2 to good approximation.f (w∗, 0) = 1 is found forw∗ ≈ 0.47. This value
is slightly larger than the estimatew ≈ 0.4 suggested by the analyses of section 3. The
discrepancy might result from inaccuracies of the theoretical scaling functions or from 1/N

corrections to scaling, but it is not very significant anyhow. The pointw = w∗ (for q = 0)
is similar to a critical point: the RG flow has a fixed point at the latter, while its projection
onto the least-stable direction has a fixed point atw∗. Therefore, the leading corrections to
scaling are absent atw∗, and all corrections should be due to 1/N effects. In agreement
with earlier results the SAW belongs to the strong-coupling regime. The parameterb(w, 0)
varies only weakly, consistent withb(w, 0) = 1+O(w).

We here should recall that traditionally the swelling factor is defined as

α2
e =

R2
e

R2
e,0

= l̃2

`2
α̃2
e (32)

whereRe,0 = Re(f0 = 0) is the end-to-end distance in the absence of the self repulsion. This
differs from the universal swelling factorα̃2

e due to the nonuniversal dependencel̃ = l̃(w, q).
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4.2. Other observables

Given ṽ, l̃ from the analysis ofR2
e we now can compare data for other quantities with the

theoretical predictions. Figure 11 shows the result forγeff(z̃) constructed from the partition
function according to equation (26). We find excellent agreement. Figure 12 shows our
results for the effective exponent defined in terms ofRg:

ν
(g)

eff := 1

2 loga
log

[
Rg(aN)

Rg(N/a)

]
. (33)

Again the agreement is excellent. Only on the strong-coupling branch are there some
deviations for shorterN , indicating that 1/N corrections are more important forRg than
for Re, as expected. Finally we note that a plot of the swelling factorα̃2

g(z̃) looks most
similar to figure 7 forα̃2

e (z̃). Again scaling with a two-branched scaling function is nicely
confirmed, but the theoretical curves are shifted by a small amount compared to the data.
This is a familiar deficiency of the first-order approximation, which does not reproduce
precisely the experimental value of the ratioR2

e /R
2
g in the excluded volume regimẽz� 1.

It is too small by about 3%. It is well known that this small deviation is eliminated by a
second-order calculation.

For shorter chains we expect deviations of experimental data from the theory, that should
roughly behave as 1/N , see equation (21). Our expectation is verified for all parameter
values. Forq = 0, w � 1 the deviation amplitudeB is essentially zero. It increases with
increasingw and reaches a maximum of∼ 0.1 aroundw∗, where we switch from the weak-
coupling to the strong-coupling branch. Similar results are found forRg, the amplitude
being about three times larger than forRe. This reflects the fact thatRg sums contributions
from subchains of all sizes.

5. Conclusions

Our results show excellent agreement among Monte Carlo data and field theoretic
predictions. Systematically varying the excluded volume strength we find that the data obey
scaling as functions of̃z, exhibiting also the expected nonuniversal 1/N -corrections. They
quantitatively agree with field theory, provided we take the two-branched structure predicted
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Figure 12. The scaling functionν(g)eff as a function of̃z. The smooth curves give the theoretical
result.

by the theory into account. This latter aspect is essential and is established here beyond
doubt, even without involving the quantitative prediction of the one loop calculation. All our
data are fully consistent with the two-parameter structure of the theory. Also the dependence
of the parameters on the microstructure is consistent with qualitative theoretical ideas.

Previous MC analysis often came to the conclusion that only the asymptotic exponents
are consistent with theoretical predictions, and that the variation outside the excluded volume
limit is not covered by the theory. The present work shows that this pessimistic view is
erroneous.

Note added in proof. In a recent preprint Caracciolo Set al (cond-mat 9703250) have used the pivot algorithm
for a high precision estimate of the exponentγ . Their resultγ = 1.1575±0.0006 is in very good agreement with
our present estimate and shows that the pivot algorithm is also efficient for this purpose.
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